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A generalization of the Biot problem [l] of the propagation of elastic waves along a cylindrical cavity 

with a free boundary is considered. It is assumed that there is a layer on the boundary described by 

boundary conditions of two kinds: (1) a Winkler-type foundation, and (2) a layer with inertial 

resistance. It is found that in the limiting case of a cavity of infinitely large radius or a frequency that 

increases without limit, the frequency equation is of the same accuracy as that for a half-space obtained 

in [2]. 

SUPPCXE the axis of a cylindrical cavity of radius (I coincides with the z axis, the reaction of the medium to a 
radial perturbation is similar to the reaction of a Winkler foundation, and the shear stresses are zero. This 
can be either a continuous cylinder made of a Winkler-type material, filling the cylindrical cavity, or a 
layer which coats the cavity and has the properties of a linear reaction. Consider the propagation of a 
stationary elastic wave with a phase velocity p parallel to the z axis, which is the axis of symmetry of the 

motion. We will solve this problem using a scalar potential 0 and a vector potential Y, which satisfy the 
wave equations 
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where c, and c, are the velocities of propagation of longitudinal and transverse waves, respectively. 
The displacements u, and u, and the non-zero stresses cr, and o,~ are given by the relations 
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We will seek the potentials 0 and Y in the form 

(1) 

@ = AH(r) cos k(z - pt), W = BG(r) sin k(z - pr) 
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Substituting ic, and Y into the wave equations we obtain the expressions 

@ = AK, (v, r) cos k(z - pt), \Ir = BK, (vg) sin k(z - pr) (3) 
vj= k(l - efi”, at=p’& i= 1,2 

where K, and Kr are modified Bessel functions of the second kind, chosen taking the radiation condition 
at infinity into account. 

The boundary conditions 

r = a. Orr = r) un or2 =0 

(q is the rigidity of the Winkler foundation), when relations (2) and (3) are taken into account, lead to a 
system of linear homogeneous equations for A and B. The condition for the solution of this system to be 
non-trivialgives the following characteristic equation 

-- 
(2-e:)‘(, -4J1-a:c/l-a:~1-2a:(~)-‘~-,a:(k,)-1~=o 

(11 K, (+)/K, (via), i = 1,2 (4) 

which connects the phase velocity with the frequency o = kp If the wavelength is very small, so that 
Ala + 0, then ak = 2nalil+ -, and Eq. (4), taking the asymptotic expression K,(z) - (~/(2z))“‘e-’ into 
account reduces to the following form as z + = 

Equation (4) differs from the frequency equation obtained by Biot in the presence of the last term, 

which changes the set of possible frequencies. Hence, for the Iimiting case, Eq. (5) differs from the 
Rayleigh equation to which the Biot equation reduces due to the presence of the last term. This limiting 

case [l] denotes that for very small wavelengths the curvature of the cavity can be ignored, i.e. the velocity 

of the wave propagation is determined as for an elastic half-space. 
For a mixed-type support the boundary conditions have the form (n, is the rigidity of the foundation 

and m, is the inertial resistance) 

r = II, err = qx ur + mr aa uJatas orz = 0 

As before, we obtain a frequency equation which differs from (4) in that rl is replaced by q1 - m,d, 

and for the limiting case when X/a-+0, we obtain an equation which differs from (5) by the fact that 

7fc2g is replaced by (qr - yw’)&. 
The last equation does not allow [2] the existence of Rayleigh-type motion when 

where R is the Rayleigh operator. This quadratic ~equality for each fixed value of I has two roots, one of 
which is w, >O. For frequencies w G’o, Rayleigh motion does not occur (low frequencies are cut-off). 

Cut-off of low frequencies (w G 171~~ /W) also occurs when nrl = 0. If q1 = 0, there is no frequency cut-off. 
The equation of the frequencies for a mixed type of support was solved numerically for rll =r$ = 

5.7~10~ kg/m3 and m, = m*= 1.4~10~ kgf2/m3, which corresponds approximately to the modelling of a 
concrete tunnel of radius a = 3 m and thickness !r = 0.5 m, situated in a granite medium (v = 0.3, and 
E = 2.9 x 10” kg/m’). 

Figure 1 shows the phase velocity of the wave propagation p (divided by c2) as a function of the 

wavelength A (divided by the cavity diameter D). In all cases p -+ c2 as w -+ 0 (A -+ -). In the case of 
a Winkler foundation and when there is no inertial resistance, we cannot have a, < 0.928, whereas for a 

rigidity qr equal to zero, all values of the phase velocity from 0 to c, are possible. 
It can be seen that the relative velocity of the wave propagation a2 in the case of a Winkler-type 
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FIG. 1. 

foundation when q1 =@ and m, =0 (the upper dashed curve) increases with 
than given by the Biot model with r~r = 0, m, = 0 (the dash-dot curve). 

For an inertial foundation (the lower dashed curve with q1 = 0, tn, = r$) 

1/D much more rapidly 

a qualitatively different 

relationship between a, and JJD is found: there is no lower limit on the value of q. 

The continuous curve (?I, = fl, m, = @) illustrates the combined effect of a Winkler and an inertial 

foundation on the value of %, and in this case there is no lower limit to the value of the velocity of the 

wave propagation p. 
When there is inertial resistance (4 = n$) a Winkler-type foundation does not change the curve of cx, 

against l/D; thii was shown by comparing the two lower curves. 
It should be noted that the presence of a Winkler support or inertial resistance gives a continuous 

frequency spectrum, unlike the previous case (a cavity of infinitely large radius)-the Rayleigh equation. 
When 

the frequency equation differs from (4) in that the last term on the left-hand side is replaced by 

- Oh - m, w2 1 (kd-’ a2 Jl - 4 tI t1 + o(ak) 

where 

Ofok) = 2(oI -m, w’) Cpok’)-’ [c, Jm Jm - t, 1 -0 

as ak+-. 
In the limiting case of short waves, we have an equation which differs from (5) in having tl replaced by 

tb -4o*, which agrees with the equation investigated previously [2]. 
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